Uhlenbeck Spaces via Affine Lie Algebras

نویسنده

  • ALEXANDER BRAVERMAN
چکیده

Let G be an almost simple simply connected group over C, and let BunaG(P ,P) be the moduli scheme of principal G-bundles on the projective plave P, of second Chern class a, trivialized along a line P ⊂ P. We define the Uhlenbeck compactification U G of BunaG(P , P), which classifies, roughly, pairs (FG,D), where D is a 0-cycle on A 2 = P − P of degree b, and FG is a point of Bun G (P,P), for varying b. In addition, we calculate the stalks of the Intersection Cohomology sheaf of UaG. To do that we give a geometric realization of Kashiwara’s crystals for affine Kac-Moody algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Fiber bundles and Lie algebras of top spaces

In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.

متن کامل

Relations for Annihilating Fields of Standard Modules for Affine Lie Algebras

J. Lepowsky and R. L. Wilson initiated the approach to combinatorial Rogers-Ramanujan type identities via the vertex operator constructions of representations of affine Lie algebras. In a joint work with Arne Meurman this approach is developed further in the framework of vertex operator algebras. The main ingredients of that construction are defining relations for standard modules and relations...

متن کامل

Affine Cohomology Classes for Filiform Lie Algebras

We classify the cohomology spaces H(g,K) for all filiform nilpotent Lie algebras of dimension n ≤ 11 over K and for certain classes of algebras of dimension n ≥ 12. The result is applied to the determination of affine cohomology classes [ω] ∈ H(g,K). We prove the general result that the existence of an affine cohomology class implies an affine structure of canonical type on g, hence a canonical...

متن کامل

Inönü - Wigner Contraction of Kac-Moody Algebras

We discuss Inönü-Wigner contractions of affine Kac-Moody algebras. We show that the Sugawara construction for the contracted affine algebra exists only for a fixed value of the level k, which is determined in terms of the dimension of the uncontracted part of the starting Lie algebra, and the quadratic Casimir in the adjoint representation. Further, we discuss contractions of G/H coset spaces, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003